ANALISIS SENTIMEN KEPUASAN LAYANAN KANTOR DESA LINGGANG BIGUNG MENGGUNAKAN METODE LEXICON-BASED
DOI:
https://doi.org/10.36595/misi.v9i1.1914Keywords:
governance, lexicon-based, public service, sentiment analysis, text miningAbstract
Analisis sentiment lexicon-based Evaluasi layanan publik tingkat desa umumnya masih bergantung pada kuesioner terstruktur yang kurang mampu menangkap persepsi masyarakat secara mendalam, khususnya yang disampaikan melalui narasi terbuka. Penelitian ini bertujuan menganalisis sentimen masyarakat terhadap layanan Kantor Desa Linggang Bigung menggunakan pendekatan analisis sentimen lexicon-based untuk mengidentifikasi kekuatan dan kelemahan layanan. Data dikumpulkan melalui kuesioner daring berisi pertanyaan terbuka yang diisi oleh 52 responden, menghasilkan 150 segmen teks naratif. Analisis dilakukan melalui tahapan text preprocessing dan pencocokan kata menggunakan leksikon InSet. Hasil analisis menunjukkan bahwa persepsi masyarakat didominasi sentimen positif (63%), diikuti sentimen negatif (25%) dan netral (12%). Sentimen positif terutama berkaitan dengan kecepatan pelayanan dan keramahan petugas, sementara sentimen negatif berkaitan dengan kondisi fasilitas dan waktu tunggu. Perbandingan hasil klasifikasi dengan pendekatan berbasis AI menunjukkan tingkat kesesuaian yang tinggi, mengindikasikan bahwa metode lexicon-based mampu merepresentasikan pola sentimen masyarakat secara memadai. Temuan ini menegaskan bahwa analisis sentimen lexicon-based merupakan pendekatan yang efektif, interpretatif, dan layak diterapkan pada konteks pemerintahan desa dengan keterbatasan data dan sumber daya komputasi.
Downloads
References
[1] M. Kumar, L. Khan, and H. T. Chang, “Evolving techniques in sentiment analysis: a comprehensive review,” 2025, PeerJ Inc. doi: 10.7717/PEERJ-CS.2592.
[2] A. A. N. Risal, Fathahillah, and D. R. A. Sulaiman, “Classification of Sentiment Analysis and Community Opinion Modeling Topics for Application of ICT in Government Operations,” Int. J. Environ. Eng. Educ., vol. 5, no. 1, pp. 35–44, Apr. 2023, doi: 10.55151/ijeedu.v5i1.99.
[3] J. R. Jim, M. A. R. Talukder, P. Malakar, M. M. Kabir, K. Nur, and M. F. Mridha, “Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review,” Mar. 01, 2024, Elsevier Ltd. doi: 10.1016/j.nlp.2024.100059.
[4] A. Ligthart, C. Catal, and B. Tekinerdogan, “Systematic reviews in sentiment analysis: a tertiary study,” Artif. Intell. Rev., vol. 54, no. 7, pp. 4997–5053, Oct. 2021, doi: 10.1007/s10462-021-09973-3.
[5] Z. Yao, J. Yang, J. Liu, M. Keith, and C. H. Guan, “Comparing tweet sentiments in megacities using machine learning techniques: In the midst of COVID-19,” Cities, vol. 116, Sep. 2021, doi: 10.1016/j.cities.2021.103273.
[6] F. Alshuwaier, A. Areshey, and J. Poon, “Applications and Enhancement of Document-Based Sentiment Analysis in Deep learning Methods: Systematic Literature Review,” Sep. 01, 2022, Elsevier B.V. doi: 10.1016/j.iswa.2022.200090.
[7] G. Kaur and A. Sharma, “A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis,” J. Big Data, vol. 10, no. 1, Dec. 2023, doi: 10.1186/s40537-022-00680-6.
[8] N. A. M. Razali et al., “Opinion mining for national security: techniques, domain applications, challenges and research opportunities,” J. Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00536-5.
[9] A. S. Talaat, “Sentiment analysis classification system using hybrid BERT models,” J. Big Data, vol. 10, no. 1, Dec. 2023, doi: 10.1186/s40537-023-00781-w.
[10] M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A survey on sentiment analysis methods, applications, and challenges,” Artif. Intell. Rev., vol. 55, no. 7, pp. 5731–5780, Oct. 2022, doi: 10.1007/s10462-022-10144-1.
[11] A. M. Van Der Veen and E. Bleich, “The advantages of lexicon-based sentiment analysis in an age of machine learning,” PLoS One, vol. 20, no. 1 January, Jan. 2025, doi: 10.1371/journal.pone.0313092.
[12] P. Wang, J. Li, and J. Hou, “S2SAN: A sentence-to-sentence attention network for sentiment analysis of online reviews,” Decis. Support Syst., vol. 149, Oct. 2021, doi: 10.1016/j.dss.2021.113603.
[13] L. Xu and W. Wang, “Improving aspect-based sentiment analysis with contrastive learning,” Nat. Lang. Process. J., vol. 3, p. 100009, Jun. 2023, doi: 10.1016/j.nlp.2023.100009.
[14] P. Mukherjee, Y. Badr, S. Doppalapudi, S. M. Srinivasan, R. S. Sangwan, and R. Sharma, “Effect of Negation in Sentences on Sentiment Analysis and Polarity Detection,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 370–379. doi: 10.1016/j.procs.2021.05.038.
[15] F. B. Matheus Araújo, Adriano Pereira, “A COMPARATIVE STUDY OF MACHINE TRANSLATION FOR MULTILINGUAL SENTENCE-LEVEL SENTIMENT ANALYSIS.” doi: https://doi.org/10.1016/j.ins.2019.10.031.
[16] M. A. Saddam, E. K. Dewantara, and A. Solichin, “Sentiment Analysis of Flood Disaster Management in Jakarta on Twitter Using Support Vector Machines,” Sinkron, vol. 8, no. 1, pp. 470–479, Jan. 2023, doi: 10.33395/sinkron.v8i1.12063.
[17] C. Haynes et al., “Automatic Classification of National Health Service Feedback,” Mathematics, vol. 10, no. 6, Mar. 2022, doi: 10.3390/math10060983.
[18] H. T. Duong and T. A. Nguyen-Thi, “A review: preprocessing techniques and data augmentation for sentiment analysis,” Comput. Soc. Networks, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40649-020-00080-x.
[19] M. Sunitha, T. Adilakshmi, and V. S. Vaishnavi, “Movie Recommendation and Sentiment Analysis using Deep Learning Algorithms,” 2024. [Online]. Available: https://www.jisem-journal.com/
[20] R. Kowalski, M. Esteve, and S. Jankin Mikhaylov, “Improving public services by mining citizen feedback: An application of natural language processing,” Public Adm., vol. 98, no. 4, pp. 1011–1026, Dec. 2020, doi: 10.1111/padm.12656.
[21] R. Srivastava, P. K. Bharti, and P. Verma, “Comparative Analysis of Lexicon and Machine Learning Approach for Sentiment Analysis.” [Online]. Available: www.ijacsa.thesai.org
[22] M. S. Assyifa et al., “Sentiment Analysis of STMIK Widya Cipta Dharma Using a Lexicon-Based Approach Analisis Sentimen Terhadap STMIK Widya Cipta Dharma Menggunakan Pendekatan Lexicon,” pp. 1–7, 2021.
[23] C. H. Hill, J. E. Fresneda, and M. Anandarajan, “The wisdom of the lexicon crowds: leveraging on decades of lexicon-based sentiment analysis for improved results,” J. Big Data, vol. 12, no. 1, Dec. 2025, doi: 10.1186/s40537-025-01186-7.
Downloads
Published
How to Cite
Issue
Section
License
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis.










