IMPLEMENTASI ALGORITMA FREQUENT PATTERN-GROWTH TERHADAP POLA MAHASISWA LULUSAN DENGAN RAPIDMINER
DOI:
https://doi.org/10.36595/jire.v4i2.384Keywords:
FP-Growth, Data Mining, Student Graduate, ThesisAbstract
This research aims to analyze the patterns formed from interconnected items using existing data mining techniques related to the graduation data of students of the S1 Informatics Engineering study program at STMIK Bumigora Mataram. The Undergraduate Informatics Engineering Study Program is one of the study programs at the Bumigora College of Management and Informatics (STMIK) which was founded on November 23, 1993. One of the factors that is considered influencing graduation is the preparation of a thesis for final year students. The number of graduates produced is inversely proportional to the use of graduate data for institutional advancement. This shows that the graduate data has not been maximally used which is used as material or input, especially for the study program to develop a thesis implementation management system to make it more effective and efficient. This study uses the association rule with the calculation of the FP-Growth Algorithm. FP-Growth is part of the association technique in data mining, where an alternative algorithm can be used to determine the data set that appears most frequently in a data set. The steps taken were (a) data collection, (b) selecting data, (c) applying the FP-Growth method, (d) implementing the software and (e) testing the results. From the test results obtained the output of 24 rules, which are then taken 8 strong association rules that have a high level of trust and are supported by a percentage of the overall data with a value of lift ratio> 1. The conclusion is that the students graduated with Mr. RA has a good thesis score between the 70-80 range and comes from the competence of Computer Networks with a 100% confidence level and is supported by 14.4% of the overall data, in line with graduate students with Mr. BK with a satisfactory thesis score between the range 80-90 which comes from Multimedia competence with a confidence level of 94.1% and is supported by 12.1% of the overall data with an infinite lift ratio value of 2.4
References
“Sejarah Universitas Bumigora,” Universitas Bumigora, 2019. .
“Sejarah STMIK Bumigora,” STMIK Bumigora, 2017. .
Buku Kurikulum Program Studi S1 Teknik Informatika. STMIK Bumigora, 2015.
“S1 Teknik Informatika,” STMIK Bumigora, 2017. .
Rencana Strategis Program Studi S-1 Teknik Informatika tahun 2013-2017 STMIK Bumigora. STMIK Bumigora, 2013.
D. H. Rahman, “Model Hubungan Faktor-Faktor yang Mempengaruhi Prokrastinasi Penyelesaian Skripsi dalam Perspektif Rational Behavior Theraphy,” 2018.
W. Widarto, “Faktor Penghambat Studi Mahasiswa yang Tidak Lulus Tepat Waktu di Jurusan Pendidikan Teknik Mesin FT UNY,” J. Din. Vokasional Tek. Mesin, vol. 2, no. 2, p. 127, 2017.
“Buku Pedoman Skripsi & Tugas AKhir,” Program Studi, 2015. .
R. M. Hariyati, “Survey Kinerja Dosen Pembimbing Skripsi Dan Kualitas Skripsi Mahasiswa Akuntansi STIE Malangkucecwara,” J. Din. Akunt., vol. 4, no. 2, pp. 121–128, 2012.
H. Sitompul, R. Rosnelli, E. Daryanto, N. Sitanggang, and D. Mulyana, “Kualitas Dosen dalam Pembimbingan Skripsi Mahasiswa Fakultas Teknik Universitas Negeri Medan,” J. Pendidik. Teknol. Dan Kejuru., vol. 20, no. 1, 2018.
A. Ikhwan, D. Nofriansyah, and Sriani, “Penerapan Data Mining dengan Algoritma Fp-Growth untuk Mendukung Strategi Promosi Pendidikan ( Studi Kasus Kampus STMIK Triguna Dharma ),” Saintikom, vol. 14, no. 3, pp. 211–226, 2015.
R. Amelia and D. P. Utomo, “Analisa Pola Pemesanan Produk Modern Trade Independent Dengan Menerepakan Algoritma Fp. Growth (Studi Kasus: Pt. Adam Dani Lestari),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 416–423, 2019.
B. S. Hasugian, “Penerapan Metode Association Rule Untuk Menganalisa Pola Pemakaian Bahan Kimia Di Laboratorium Menggunakan Algoritma FP-Growth ( Studi Kasus di Laboratorium Kimia PT . PLN ( Persero ) Sektor Pembangkitan Belawan Medan ) Buyung Solihin Hasugian Universitas,” J. Ilmu Komput. dan Inform., vol. 03, no. 02, pp. 56–69, 2019.
G. Gunadi and D. I. Sensuse, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( Fp-Growth )?:,” Telematika, vol. 4, no. 1, pp. 118–132, 2012.
R. Aditiya, S. Defit, and G. W. Nurcahyo, “Jurnal Informatika Ekonomi Bisnis Prediksi Tingkat Ketersediaan Stock Sembako Menggunakan Algoritma FP-Growth dalam Meningkatkan Penjualan,” vol. 2, 2020.
M. W. Goni, E. Suratno, S. Nursyi’ah, and D. Gustian, “Penerapan FP-Growth dalam Penjualan Perlengkapan Ibadah Umat Muslim,” Semin. Nas. Inform. 2020 (SEMNASIF 2020), vol. 1, no. 1, 2020.
Dennis Aprilla C, D. A. Baskoro, L. Ambarwati, and I. W. S. Wicaksana, “Belajar Data Mining dengan RapidMiner,” Innov. Knowl. Manag. Bus. Glob. Theory Pract. Vols 1 2, vol. 5, no. 4, pp. 1–5, 2013.
X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. Mclachlan, A. Ng, B. Liu, P. S. Yu, Z. Z. Michael, S. David, and J. H. Dan, Top 10 algorithms in data mining, no. December. 2007.
M. I. Ghozali and S. M. A. N. J. Pati, “Analisa Pola Belanja Menggunakan Algoritma Fp Growth , Self Organizing Map ( Som ) Dan K Medoids,” vol. 8, no. 1, pp. 317–326, 2017.
H. D. Purnomo, “Penerapan Algoritma Frequent Pattern Growth Untuk Menganalisis Pola Pembelian Konsumen Artikel Ilmiah Program Studi Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Satya Wacana Salatiga Penerapan Algoritma Frequent Pattern Growth Untuk Menganalisis Pola Pembelian Konsumen Artikel Ilmiah Program Studi Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Satya Wacana Salatiga,” no. 672015167, 2018.
N. Wandi, R. A. Hendrawan, and A. Mukhlason, “Pengembangan Sistem Rekomendasi Penelusuran Buku dengan Penggalian Association Rule Menggunakan Algoritma Apriori ( Studi Kasus Badan Perpustakaan dan Kearsipan Provinsi Jawa Timur ),” vol. 1, pp. 1–5, 2012.
L. Mutawalli, M. T. A. Zaen, and W. Bagye, “Klasifikasi Teks Sosial Media Twitter Menggunakan Support Vector Machine (Studi Kasus Penusukan Wiranto),” J. Inform. dan Rekayasa Elektron., vol. 2, no. 2, p. 43, 2019, doi: 10.36595/jire.v2i2.117.
Downloads
Published
How to Cite
Issue
Section
License
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis.